طبقه بندی: گام دوم Deep Learning یا یادگیری عمیق در پایتون

  • مدرس: زهرا طباطبایی
  • تخصص: کارشناس سنجش از دور و پردازش تصاویر ماهواره ای
  • موضوع: گام دوم از آموزش یادگیری عمیق در پایتون (طبقه بندی/ Classification)
  • نرم افزار: پایتون
  • مخاطب: تمامی رشته­ ها
  • نوع آموزش: ویدیویی
  • داده های تمرینی:‌ ندارد
  • پیش نیاز: آشنایی مقدمانی با پایتون و کتابخانه های رگرسیون در پایتون
  • این آموزش بر مبنای سرفصل های ارائه شده پیرامون آموزش یادگیری ماشین در محیط پایتون در سایت یودمی (Udemy) می باشد.

360,000 تومان

0 افرادی که اکنون این محصول را تماشا می کنند!
 بالاترین کیفیت
عدم محدودیت زمانی
 مناسبترین قیمت
 خرید و دانلود آنی
خرید با کارت عضو شتاب

یادگیری ماشین (Machine Learning) یک شاخه از هوش مصنوعی  است که به سیستم‌ها توانایی یادگیری توسط خودشان و انجام امور بدون آنکه به طور صریح برای آن‌ها برنامه‌نویسی شده باشند را می‌دهد. یادگیری ماشین برای بسیاری از مسائل جهان واقعی قابل استفاده است. در طی چند سال اخیر، روش‌های دسته بندی به یکی از مهم‌ترین ابزارهای استخراج و تولید دانش در صنایع و شرکت‌های تجاری تبدیل شده‌اند.

به طور مثال، روش‌های دسته بندی به صاحبان صنایع و شرکت‌های تجاری اجازه می‌دهند تا به راحتی بینش و دانش موجود در داده‌ها را استخراج و از آن‌ها، جهت خودکارسازی فرایندهای تجاری استفاده کنند. پس به طور کلی، علم ماشین لرنینگ می تواند به یک نرم افزار قدرتی دهد که با استفاده از تجربیاتی که دارد بعضی از مسائل را حل کند.


توضیحات محصول آموزشی

برای رسیدن به قله­ یادگیری ماشین و یادگیری عمیق لازم است ۵ گام را طی کنیم. درست مثل سال­ های ابتدایی بامبو

وقت کاشت بامبوی خودتون!

  

۵ گام اساسی برای تسلط بر یادگیری ماشین عبارتند از:

  1. رگرسیون
  2. طبقه­ بندی
  3. خوشه ­بندی
  4. کاهش ویژگی
  5. یادگیری عمیق

در این دوره به آموزش گام دوم (طبقه بندی) در محیط پایتون می ­پردازیم. آموزش ارائه شده به صورت تئوری و کدنویسی است.

بدین ترتیب که در هر جلسه، بخشی از ویدئو به توضیح و تفسیر معنا و عملکرد الگوریتم­ ها به­ زبانی ساده و مقدماتی در محیط ریاضی می ­پردازد. بخش دوم از آن نیز به آموزش کدنویسی به کمک کتابخانه ­های قوی در پایتون از جمله Numpy، Sklearn، Pandas، Matplot و …. اختصاص دارد.


 معرفی آموزش:


عناوین آموزشی

عناوین آموزشی شامل موارد زیر می باشد:

جلسه اول: مرور مطالب رگرسیون به طور مختصر

جلسه دوم: طبقه­ بندی (KNN(K-nearest neighborhood

جلسه سوم: طبقه بندی ماشین بردار پشتیبان یا svm خطی

جلسه چهارم: طبقه بندی ماشین بردار پشتیبان یا svm غیر خطی

جلسه پنجم: درخت تصمیم گیری


مباحث مرتبط با این آموزش:

دیدگاهها

  1. مهرانه

    سلام هایپر پارامترها هم بحث میشه؟

    0
    0
    • زهرا طباطبایی

      سلام
      خیر.

    • زهرا طباطبایی

      با سلام و وقت بخیر.
      برای دریافت آموزش در زمینه ی تنظیم مقادیر هایپرپارامتر ها می توانید به گام اخر آموزش یادگیری عمیق/شبکه های عصبی مراجعه فرمایید.

      موفق باشید.
      با احترام
      طباطبایی

  2. نرگس

    سلام وقتتون بخیر. یه پیشنهاد دارم لطفا برای افرادی که از سایت خریدهای زیادی انجام می دهند مزایایی مثل خرید ها با تخفیف یا هدیه دادن بعضی از فایل ها را بگذارید. از ارایه محصولات بسیار عالی شما کمال تشکر را دارم.

    0
    0
    • امیرحسین احراری

      با سلام و احترام

      ممنون از پیشنهاد شما. تا پایان تایستان قابلیت های جدید رو به سایت اضافه خواهیم کرد و این گونه از موارد رو نیز در نظر خواهیم گرفت.

      موفق باشید

  3. mohammad moghaddam

    وقت بخیر، مباحث به منظور پردازش و طبقه بندی تصاویر هم مفید است؟

    0
    0
    • زهرا طباطبایی

      سلام وقت شما هم بخیر
      دوست عزیز یکی از جذاب ترین کاربردهای یادگیری ماشین در زمینه ی پردازش تصویر است پس مبحث طبقه بندی به شدت در پردازش تصاویر علی الخصوص تصاویر ماهواره ای کاربرد دارد.

      براتون ارزوی موفقیت دارم.
      با احترام
      طباطبایی

  4. سعید

    باسلام.
    در قسمت عنوان بیان شده روشهای deep learning اما در متن روشهای machine learning بیان شده. طبقه بندیهای حاصل از این روش با طبقه بندی machine learning در نرم افزار ecognation یکسان است؟

    0
    0
دیدگاه خود را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

 آموزش هــای رایــگان